Source code for pynwb.image

import warnings
from import Iterable

from hdmf.utils import docval, popargs, call_docval_func, get_docval

from . import register_class, CORE_NAMESPACE
from .base import TimeSeries, Image

[docs]@register_class('ImageSeries', CORE_NAMESPACE) class ImageSeries(TimeSeries): ''' General image data that is common between acquisition and stimulus time series. The image data can be stored in the HDF5 file or it will be stored as an external image file. ''' __nwbfields__ = ('dimension', 'external_file', 'starting_frame', 'format') @docval(*get_docval(TimeSeries.__init__, 'name'), # required {'name': 'data', 'type': ('array_data', 'data', TimeSeries), 'shape': ([None] * 3, [None] * 4), 'doc': ('The data values. Can be 3D or 4D. The first dimension must be time (frame). The second and third ' 'dimensions represent x and y. The optional fourth dimension represents z.'), 'default': None}, *get_docval(TimeSeries.__init__, 'unit'), {'name': 'format', 'type': str, 'doc': 'Format of image. Three types: 1) Image format; tiff, png, jpg, etc. 2) external 3) raw.', 'default': None}, {'name': 'external_file', 'type': ('array_data', 'data'), 'doc': 'Path or URL to one or more external file(s). Field only present if format=external. ' 'Either external_file or data must be specified, but not both.', 'default': None}, {'name': 'starting_frame', 'type': Iterable, 'doc': 'Each entry is the frame number in the corresponding external_file variable. ' 'This serves as an index to what frames each file contains. If external_file is not ' 'provided, then this value will be None', 'default': [0]}, {'name': 'bits_per_pixel', 'type': int, 'doc': 'DEPRECATED: Number of bits per image pixel', 'default': None}, {'name': 'dimension', 'type': Iterable, 'doc': 'Number of pixels on x, y, (and z) axes.', 'default': None}, *get_docval(TimeSeries.__init__, 'resolution', 'conversion', 'timestamps', 'starting_time', 'rate', 'comments', 'description', 'control', 'control_description')) def __init__(self, **kwargs): bits_per_pixel, dimension, external_file, starting_frame, format = popargs( 'bits_per_pixel', 'dimension', 'external_file', 'starting_frame', 'format', kwargs) call_docval_func(super(ImageSeries, self).__init__, kwargs) if external_file is None and is None: raise ValueError("Must supply either external_file or data to %s '%s'." % (self.__class__.__name__, self.bits_per_pixel = bits_per_pixel self.dimension = dimension self.external_file = external_file if external_file is not None: self.starting_frame = starting_frame else: self.starting_frame = None self.format = format @property def bits_per_pixel(self): return self.fields.get('bits_per_pixel') @bits_per_pixel.setter def bits_per_pixel(self, val): if val is not None: warnings.warn("bits_per_pixel is no longer used", DeprecationWarning) self.fields['bits_per_pixel'] = val
[docs]@register_class('IndexSeries', CORE_NAMESPACE) class IndexSeries(TimeSeries): ''' Stores indices to image frames stored in an ImageSeries. The purpose of the ImageIndexSeries is to allow a static image stack to be stored somewhere, and the images in the stack to be referenced out-of-order. This can be for the display of individual images, or of movie segments (as a movie is simply a series of images). The data field stores the index of the frame in the referenced ImageSeries, and the timestamps array indicates when that image was displayed. ''' __nwbfields__ = ('indexed_timeseries',) @docval(*get_docval(TimeSeries.__init__, 'name'), # required {'name': 'data', 'type': ('array_data', 'data', TimeSeries), 'shape': (None, ), # required 'doc': ('The data values. Must be 1D, where the first dimension must be time (frame)')}, *get_docval(TimeSeries.__init__, 'unit'), {'name': 'indexed_timeseries', 'type': TimeSeries, # required 'doc': 'HDF5 link to TimeSeries containing images that are indexed.'}, *get_docval(TimeSeries.__init__, 'resolution', 'conversion', 'timestamps', 'starting_time', 'rate', 'comments', 'description', 'control', 'control_description')) def __init__(self, **kwargs): indexed_timeseries = popargs('indexed_timeseries', kwargs) super(IndexSeries, self).__init__(**kwargs) self.indexed_timeseries = indexed_timeseries
[docs]@register_class('ImageMaskSeries', CORE_NAMESPACE) class ImageMaskSeries(ImageSeries): ''' An alpha mask that is applied to a presented visual stimulus. The data[] array contains an array of mask values that are applied to the displayed image. Mask values are stored as RGBA. Mask can vary with time. The timestamps array indicates the starting time of a mask, and that mask pattern continues until it's explicitly changed. ''' __nwbfields__ = ('masked_imageseries',) @docval(*get_docval(ImageSeries.__init__, 'name'), # required *get_docval(ImageSeries.__init__, 'data', 'unit'), {'name': 'masked_imageseries', 'type': ImageSeries, # required 'doc': 'Link to ImageSeries that mask is applied to.'}, *get_docval(ImageSeries.__init__, 'format', 'external_file', 'starting_frame', 'bits_per_pixel', 'dimension', 'resolution', 'conversion', 'timestamps', 'starting_time', 'rate', 'comments', 'description', 'control', 'control_description')) def __init__(self, **kwargs): masked_imageseries = popargs('masked_imageseries', kwargs) super(ImageMaskSeries, self).__init__(**kwargs) self.masked_imageseries = masked_imageseries
[docs]@register_class('OpticalSeries', CORE_NAMESPACE) class OpticalSeries(ImageSeries): ''' Image data that is presented or recorded. A stimulus template movie will be stored only as an image. When the image is presented as stimulus, additional data is required, such as field of view (eg, how much of the visual field the image covers, or how what is the area of the target being imaged). If the OpticalSeries represents acquired imaging data, orientation is also important. ''' __nwbfields__ = ('distance', 'field_of_view', 'orientation') @docval(*get_docval(ImageSeries.__init__, 'name'), {'name': 'data', 'type': ('array_data', 'data'), 'shape': ([None] * 3, [None, None, None, 3]), 'doc': ('Images presented to subject, either grayscale or RGB. May be 3D or 4D. The first dimension must ' 'be time (frame). The second and third dimensions represent x and y. The optional fourth ' 'dimension must be length 3 and represents the RGB value for color images.')}, *get_docval(ImageSeries.__init__, 'unit', 'format'), {'name': 'distance', 'type': 'float', 'doc': 'Distance from camera/monitor to target/eye.'}, # required {'name': 'field_of_view', 'type': ('array_data', 'data', 'TimeSeries'), 'shape': ((2, ), (3, )), # required 'doc': 'Width, height and depth of image, or imaged area (meters).'}, {'name': 'orientation', 'type': str, # required 'doc': 'Description of image relative to some reference frame (e.g., which way is up). ' 'Must also specify frame of reference.'}, *get_docval(ImageSeries.__init__, 'external_file', 'starting_frame', 'bits_per_pixel', 'dimension', 'resolution', 'conversion', 'timestamps', 'starting_time', 'rate', 'comments', 'description', 'control', 'control_description')) def __init__(self, **kwargs): distance, field_of_view, orientation = popargs('distance', 'field_of_view', 'orientation', kwargs) super(OpticalSeries, self).__init__(**kwargs) self.distance = distance self.field_of_view = field_of_view self.orientation = orientation
[docs]@register_class('GrayscaleImage', CORE_NAMESPACE) class GrayscaleImage(Image): @docval(*get_docval(Image.__init__, 'name'), {'name': 'data', 'type': ('array_data', 'data'), 'doc': 'Data of image. Must be 2D', 'shape': (None, None)}, *get_docval(Image.__init__, 'resolution', 'description')) def __init__(self, **kwargs): call_docval_func(super(GrayscaleImage, self).__init__, kwargs)
[docs]@register_class('RGBImage', CORE_NAMESPACE) class RGBImage(Image): @docval(*get_docval(Image.__init__, 'name'), {'name': 'data', 'type': ('array_data', 'data'), 'doc': 'Data of image. Must be 3D where the third dimension has length 3 and represents the RGB value', 'shape': (None, None, 3)}, *get_docval(Image.__init__, 'resolution', 'description')) def __init__(self, **kwargs): call_docval_func(super(RGBImage, self).__init__, kwargs)
[docs]@register_class('RGBAImage', CORE_NAMESPACE) class RGBAImage(Image): @docval(*get_docval(Image.__init__, 'name'), {'name': 'data', 'type': ('array_data', 'data'), 'doc': 'Data of image. Must be 3D where the third dimension has length 4 and represents the RGBA value', 'shape': (None, None, 4)}, *get_docval(Image.__init__, 'resolution', 'description')) def __init__(self, **kwargs): call_docval_func(super(RGBAImage, self).__init__, kwargs)